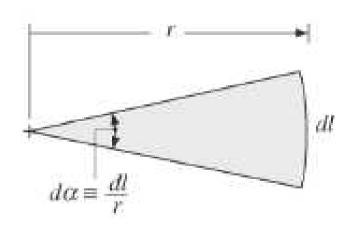
12.3-INTENSIDADE DE RADIAÇÃO

- Tanto a radiação que deixa uma superfície quanto a radiação que chega em uma superfície tem característica direcional.
- Para calcular E, J e G e q''_{rad} esses efeitos direcionais devem ser considerados.
- Para levar em consideração esses efeitos define-se uma grandeza chamada de intensidade de radiação I.
- Devido a sua natureza, o tratamento matemático da radiação térmica envolve o uso do sistema de coordenadas esféricas.

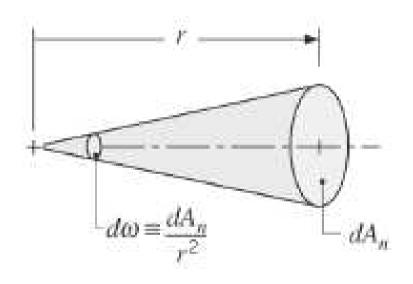
12.3.1-Definições matemáticas

- ÂNGULO PLANO DIFERENCIAL: definido por uma região entre os raios de um círculo e é medido como a razão entre o comprimento de arco dl sobre o círculo e o raio r do círculo:



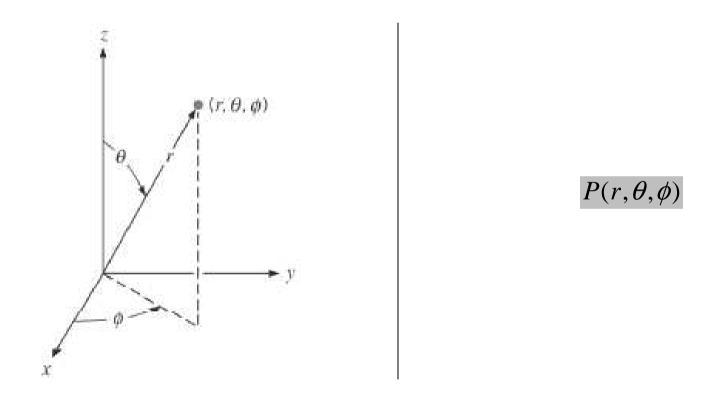
$$d\alpha = \frac{dl}{r}$$
 (radiano [rad])

- ÂNGULO SÓLIDO DIFERENCIAL: definido por uma região entre os raios de uma esfera e é medido como a razão entre a área $\overline{dA_n}$ sobre a esfera e o quadrado do raio da esfera:

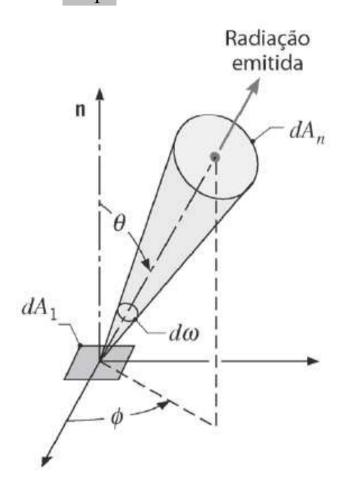


$$d\omega = \frac{dA_n}{r^2}$$
 (esterorradiano, [sr])

- SISTEMA DE COORDENADAS ESFÉRICAS: um ponto nesse sistema é definido pelo raio r da esfera, pelo ângulo de zênite θ e pelo ângulo azimutal ϕ .



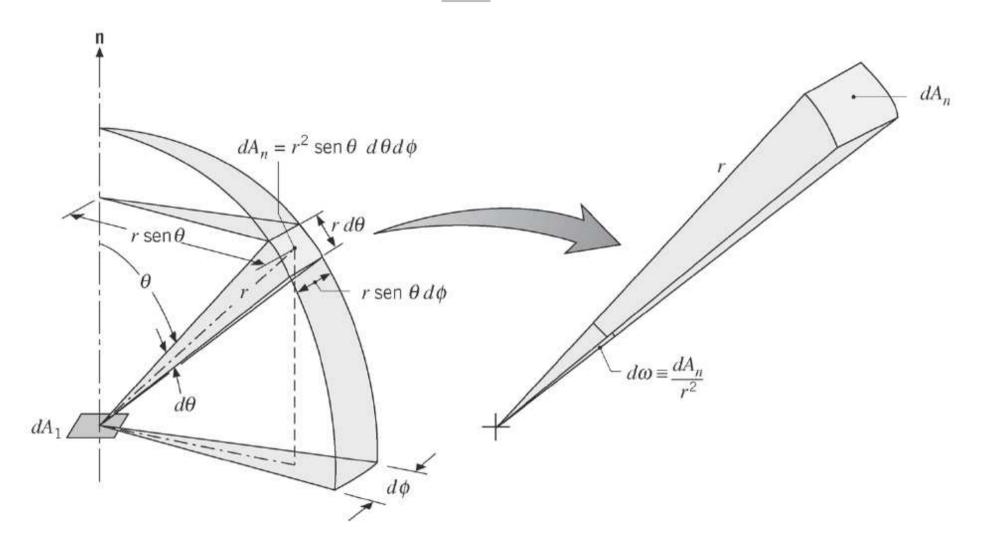
- Considere a emissão em uma direção particular a partir de um elemento com área superficial dA_1 :

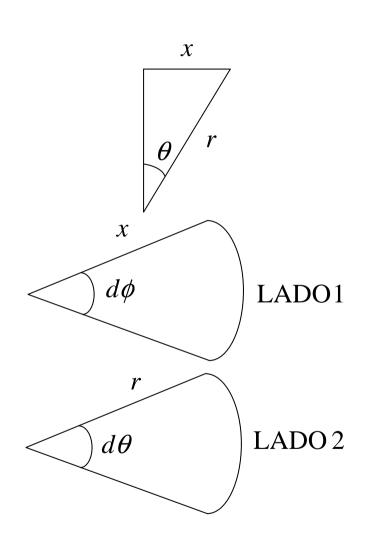


EMISSÃO DE RADIAÇÃO A PARTIR DE UMA ÁREA DIFERENCIAL dA_1 PARA UM ÂNGULO SÓLIDO $d\omega$ SUBENTENDIDO POR dA_n EM UM PONTO SOBRE dA_1

A ÁREA dA_n ATRAVÉS DA QUAL A RADIAÇÃO PASSA CORRESPONDE A UM ÂNGULO SÓLIDO DIFERENCIAL dω QUANDO VISTA DE UM PONTO SOBRE dA₁

- CÁLCULO DO ÂNGULO SÓLIDO $d\omega$:





$$\sin \theta = \frac{x}{r} \Rightarrow x = r \sin \theta$$

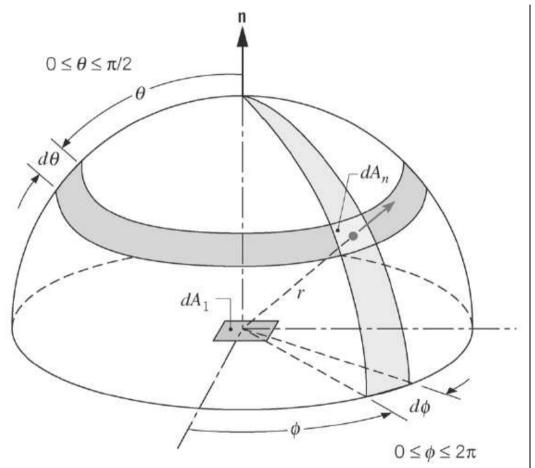
$$d\phi = \frac{\text{LADO1}}{x} = \frac{\text{LADO1}}{r\sin\theta} \Rightarrow \text{LADO1} = r\sin\theta d\phi$$

$$d\theta = \frac{\text{LADO 2}}{r} \Rightarrow \text{LADO 2} = rd\theta$$

$$dA_n = \text{LADO} 1 \times \text{LADO} 2 = (r \sin \theta d\phi)(rd\theta) = r^2 \sin \theta d\theta d\phi$$

$$d\omega = \frac{dA_n}{r^2} = \frac{r^2 \sin \theta d\theta d\phi}{r^2} \Rightarrow d\omega = \sin \theta d\theta d\phi$$

- A partir de dA_1 a radiação pode ser emitida em qualquer direção definida por uma hemisfério hipotético (uma semi-esfera).
- O ângulo sólido total, associado ao hemisfério completo pode ser obtido pela integração de $d\omega$ de $\theta=0$ até $\theta=\pi/2$ e de $\phi=0$ até $\phi=2\pi$.



$$d\omega = \sin\theta d\theta d\phi$$

$$\int_{h} d\omega = \int_{0}^{2\pi} \int_{0}^{\pi/2} \sin\theta d\theta d\phi$$

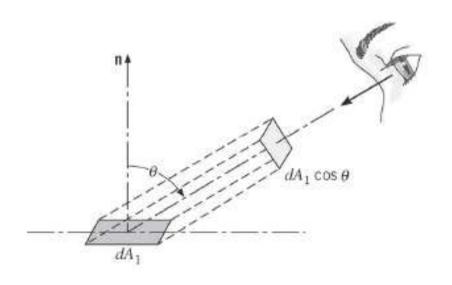
$$\int_h d\omega = \int_0^{2\pi} \left[-\cos\theta \right]_0^{\pi/2} d\phi$$

$$\int_{h} d\omega = \int_{0}^{2\pi} \left[-\cos\left(\frac{\pi}{2}\right) + \underbrace{\cos(0)}_{=1} \right] d\phi$$

$$\int_{h} d\omega = \int_{0}^{2\pi} d\phi = [\phi]_{0}^{2\pi} = 2\pi \text{ sr}$$

12.3.2-INTENSIDADE DE RADIAÇÃO

- Define-se I_{λ} (intensidade de radiação espectral) como: taxa na qual energia radiante é emitida no comprimento de onda λ na direção (θ,ϕ) , por unidade de área da superfície emissora NORMAL a essa direção, por unidade de ângulo sólido no entorno dessa direção e por unidade de intervalo de comprimento de onda $d\lambda$ no entorno de λ .



$$I_{\lambda}(\lambda, \theta, \phi) = \frac{dq}{dA_1 \cos \theta \cdot d\omega \cdot d\lambda}$$

$$[W/(m^2 \cdot sr \cdot \mu m)]$$

- Define-se dq_{λ} : taxa na qual a radiação de comprimento de onda λ deixa dA_1 e passa por dA_n .

$$dq_{\lambda} = \frac{dq}{d\lambda}$$

- Combinando as definições de $I_{\lambda}(\lambda, \theta, \phi)$ e dq_{λ} obtém-se:

$$I_{\lambda}(\lambda, \theta, \phi) = \frac{1}{dA_{1} \cos \theta \cdot d\omega} \frac{dq}{d\lambda} = \frac{dq_{\lambda}}{dA_{1} \cos \theta \cdot d\omega} \Rightarrow dq_{\lambda} = I_{\lambda}(\lambda, \theta, \phi) dA_{1} \cos \theta \cdot d\omega$$

- A unidade de dq_{λ} é [W/ μ m]

- Substituindo a expressão de $d\omega$ em dq_{λ} , dividindo por dA_1 e definindo $dq_{\lambda}^{"}=dq_{\lambda}/dA_1$, obtém-se:

$$dq_{\lambda} = I_{\lambda}(\lambda, \theta, \phi) dA_{1} \cos \theta \cdot d\omega \Rightarrow \frac{dq_{\lambda}}{dA_{1}} = I_{\lambda}(\lambda, \theta, \phi) \cos \theta \cdot \sin \theta d\theta d\phi$$

$$dq_{\lambda}^{"} = I_{\lambda}(\lambda, \theta, \phi) \cos \theta \cdot \sin \theta d\theta d\phi$$
 (fluxo de radiação espectral) [W/(m² · \mu m)]

- A expressão acima permite calcular os fluxos térmicos radiantes conhecida a distribuição espectral e direcional da intensidade de radiação $I_{\lambda}(\lambda,\theta,\phi)$ em qualquer ângulo sólido finito ou ao longo de qualquer intervalo de comprimento de onda finito.
- Essa expressão será utilizada para se determinar E, J e G e $q_{rad}^{"}$.

12.3.3-RELAÇÃO COM A EMISSÃO

- PODER EMISSIVO HEMISFÉRICO ESPECTRAL, $E_{\lambda}(\lambda)$, $(W/(m^2 \cdot \mu m))$: taxa na qual a radiação de comprimento de onda λ é emitida em todas as direções a partir de uma superfície por unidade de intervalo de comprimentos de onda λ no entorno de λ e por unidade de área superficial.
- Usando o fluxo de radiação espectral:

$$E_{\lambda}(\lambda) = \iint dq_{\lambda}^{"} = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,e}(\lambda,\theta,\phi) \cos\theta \cdot \sin\theta d\theta d\phi$$

- Note que $E_{\lambda}(\lambda)$ é um fluxo radiante com base na área superficial real dA_1 enquanto $I_{\lambda,e}$ se baseia na área projetada $dA_1\cos\theta$.

- PODER EMISSIVO HEMISFÉRICO TOTAL, E, (W/m^2) : é a taxa na qual a radiação é emitida por unidade de área em todos os comprimentos de onda possíveis e em todas as direções possíveis.

$$E = \int_0^\infty E_\lambda(\lambda) d\lambda = \int_0^\infty \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,e}(\lambda,\theta,\phi) \cos\theta \cdot \sin\theta d\theta d\phi d\lambda$$

- Usualmente o termo HEMISFÉRICO é omitido e fala-se em PODER EMISSIVO ESPECTRAL $E_{\lambda}(\lambda)$ e PODER EMISSIVO TOTAL E.
- Embora a distribuição direcional da emissão de uma superfície varie de acordo com a superfície, existe um caso especial que fornece uma aproximação razoável para muitas superfícies.

- Esse caso é o emissor difuso, onde a intensidade da radiação emitida é independente da direção, ou seja:

$$I_{\lambda,e}(\lambda,\theta,\phi) = I_{\lambda,e}(\lambda)$$

- Da definição do PODER EMISSIVO ESPECTRAL $E_{\lambda}(\lambda)$:

$$E_{\lambda}(\lambda) = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,e}(\lambda) \cos\theta \cdot \sin\theta d\theta d\phi = I_{\lambda,e}(\lambda) \int_{0}^{2\pi} \int_{0}^{\pi/2} \cos\theta \cdot \underline{\sin\theta} d\theta d\phi$$

$$=I_{\lambda,e}(\lambda)\int_{0}^{2\pi}\int_{0}^{\pi/2}udud\phi=I_{\lambda,e}(\lambda)\int_{0}^{2\pi}\left(\frac{u^{2}}{2}\right)_{0}^{\pi/2}d\phi=I_{\lambda,e}(\lambda)\int_{0}^{2\pi}\left(\frac{\sin^{2}\theta}{2}\right)_{0}^{\pi/2}d\phi$$

$$=I_{\lambda,e}(\lambda)\int_0^{2\pi} \left[\frac{\sin^2(\pi/2) - \sin^2(0)}{2} \right]_0^{\pi/2} d\phi = I_{\lambda,e}(\lambda)\int_0^{2\pi} \left(\frac{1}{2} \right) d\phi = \left(\frac{1}{2} \right) I_{\lambda,e}(\lambda) \int_0^{2\pi} d\phi$$

$$=2\pi\left(\frac{1}{2}\right)I_{\lambda,e}(\lambda)\Rightarrow E_{\lambda}(\lambda)=\pi I_{\lambda,e}(\lambda)$$

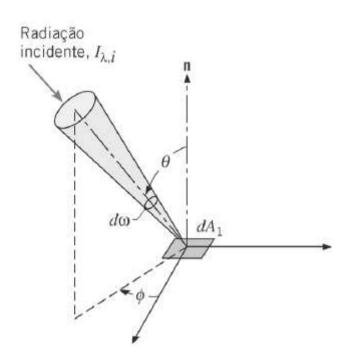
- Da definição do PODER EMISSIVO TOTAL *E* :

$$\begin{split} E &= \int_0^\infty \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,e}(\lambda) \cos\theta \cdot \underbrace{\sin\theta}_{=u} d\theta d\phi d\lambda \\ &= \int_0^\infty \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,e}(\lambda) u du d\phi d\lambda = \int_0^\infty \int_0^{2\pi} I_{\lambda,e}(\lambda) \left(\frac{u^2}{2}\right)_0^{\pi/2} d\phi d\lambda = \int_0^\infty \int_0^{2\pi} I_{\lambda,e}(\lambda) \left(\frac{\sin^2\theta}{2}\right)_0^{\pi/2} d\phi d\lambda \\ &= \int_0^\infty \int_0^{2\pi} I_{\lambda,e}(\lambda) \left[\frac{\sin^2(\pi/2) - \sin^2(0)}{2}\right]_0^{\pi/2} d\phi d\lambda = \int_0^\infty \int_0^{2\pi} I_{\lambda,e}(\lambda) \left(\frac{1}{2}\right) d\phi d\lambda \\ &= \left(\frac{1}{2}\right) \int_0^\infty I_{\lambda,e}(\lambda) \int_0^{2\pi} d\phi d\lambda = 2\pi \left(\frac{1}{2}\right) \int_0^\infty I_{\lambda,e}(\lambda) d\lambda \Rightarrow E = \pi I_e \end{split}$$

- I_e é a intensidade total da radiação emitida e o ângulo π tem a unidade esterorradianos.

12.3.4-RELAÇÃO COM A IRRADIAÇÃO

- Os conceitos anteriores podem ser estendidos para a radiação incidente. Tal radiação pode ter sua origem na emissão e reflexão que ocorrem em outras superfícies.



- IRRADIAÇÃO HEMISFÉRICA ESPECTRAL, $G_{\lambda}(\lambda)$, $(W/(m^2 \cdot \mu m))$: taxa na qual a radiação de comprimento de onda λ incide sobre uma superfície a partir de todas as direções, por unidade de área da superfície e por unidade de intervalo de comprimentos de onda $d\lambda$ no entorno de λ .

- Usando o fluxo de radiação espectral:

$$G_{\lambda}(\lambda) = \iint dq_{\lambda}^{"} = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,i}(\lambda,\theta,\phi) \cos\theta \cdot \sin\theta d\theta d\phi$$

- Note que $G_{\lambda}(\lambda)$ é um fluxo radiante com base na área superficial real dA_1 enquanto $I_{\lambda,i}$ se baseia na área projetada $dA_1\cos\theta$.

- IRRADIAÇÃO HEMISFÉRICA TOTAL, G, (W/m^2) : é a taxa na qual a radiação incide por unidade de área em todos os comprimentos de onda possíveis e em todas as direções possíveis.

$$G = \int_0^\infty G_\lambda(\lambda) d\lambda = \int_0^\infty \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,i}(\lambda,\theta,\phi) \cos\theta \cdot \sin\theta d\theta d\phi d\lambda$$

- Usualmente o termo HEMISFÉRICO é omitido e fala-se em IRRADIAÇÃO ESPECTRAL $G_{\lambda}(\lambda)$ e IRRADIAÇÃO TOTAL G.
- Embora a distribuição direcional da irradiação sobre uma superfície varie de acordo com a superfície, existe um caso especial que fornece uma aproximação razoável para muitas superfícies.

- Esse caso é uma superfície difusa, onde a intensidade da radiação incidente é independente da direção, ou seja:

$$I_{\lambda,i}(\lambda,\theta,\phi) = I_{\lambda,i}(\lambda)$$

- Da definição da IRRADIAÇÃO ESPECTRAL $G_{\lambda}(\lambda)$:

$$G_{\lambda}(\lambda) = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,i}(\lambda) \cos\theta \cdot \sin\theta d\theta d\phi = I_{\lambda,i}(\lambda) \int_{0}^{2\pi} \int_{0}^{\pi/2} \cos\theta \cdot \underline{\sin\theta} d\theta d\phi$$

$$=I_{\lambda,i}(\lambda)\int_{0}^{2\pi}\int_{0}^{\pi/2}udud\phi=I_{\lambda,i}(\lambda)\int_{0}^{2\pi}\left(\frac{u^{2}}{2}\right)_{0}^{\pi/2}d\phi=I_{\lambda,i}(\lambda)\int_{0}^{2\pi}\left(\frac{\sin^{2}\theta}{2}\right)_{0}^{\pi/2}d\phi$$

$$=I_{\lambda,i}(\lambda)\int_0^{2\pi} \left[\frac{\sin^2(\pi/2) - \sin^2(0)}{2} \right]_0^{\pi/2} d\phi = I_{\lambda,i}(\lambda)\int_0^{2\pi} \left(\frac{1}{2} \right) d\phi = \left(\frac{1}{2} \right) I_{\lambda,i}(\lambda)\int_0^{2\pi} d\phi$$

$$=2\pi \left(\frac{1}{2}\right)I_{\lambda,i}(\lambda) \Longrightarrow G_{\lambda}(\lambda) = \pi I_{\lambda,i}(\lambda)$$

- Da definição da IRRADIAÇÃO TOTAL G:

$$\begin{split} G &= \int_0^\infty \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,i}(\lambda) \cos\theta \cdot \underline{\sin\theta} d\theta d\phi d\lambda \\ &= \int_0^\infty \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,i}(\lambda) u du d\phi d\lambda = \int_0^\infty \int_0^{2\pi} I_{\lambda,i}(\lambda) \left(\frac{u^2}{2}\right)_0^{\pi/2} d\phi d\lambda = \int_0^\infty \int_0^{2\pi} I_{\lambda,i}(\lambda) \left(\frac{\sin^2\theta}{2}\right)_0^{\pi/2} d\phi d\lambda \\ &= \int_0^\infty \int_0^{2\pi} I_{\lambda,i}(\lambda) \left[\frac{\sin^2(\pi/2) - \sin^2(0)}{2}\right]_0^{\pi/2} d\phi d\lambda = \int_0^\infty \int_0^{2\pi} I_{\lambda,i}(\lambda) \left(\frac{1}{2}\right) d\phi d\lambda \\ &= \left(\frac{1}{2}\right) \int_0^\infty I_{\lambda,i}(\lambda) \int_0^{2\pi} d\phi d\lambda = 2\pi \left(\frac{1}{2}\right) \int_0^\infty I_{\lambda,i}(\lambda) d\lambda \Rightarrow G = \pi I_i \end{split}$$

- I_i é a intensidade total da radiação incidente e o ângulo π tem unidade esterorradianos.

12.3.5-RELAÇÃO COM A RADIOSIDADE PARA SUPERFÍCIE OPACA

- RADIOSIDADE HEMISFÉRICA ESPECTRAL, $J_{\lambda}(\lambda)$, $(W/(m^2 \cdot \mu m))$: taxa na qual a radiação de comprimento de onda λ é emitida em todas as direções a partir de uma superfície por unidade de intervalo de comprimentos de onda $d\lambda$ no entorno de λ e por unidade de área superficial.
- Usando o fluxo de radiação espectral:

$$J_{\lambda}(\lambda) = \iint dq_{\lambda}^{"} = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,e+r}(\lambda,\theta,\phi) \cos\theta \cdot \sin\theta d\theta d\phi$$

- Note que $J_{\lambda}(\lambda)$ é um fluxo radiante com base na área superficial real dA_1 enquanto $I_{\lambda,e+r}$ se baseia na área projetada $dA_1\cos\theta$.

- RADIOSIDADE HEMISFÉRICA TOTAL, J, (W/m^2) : é a taxa na qual a radiação é emitida por unidade de área em todos os comprimentos de onda possíveis e em todas as direções possíveis.

$$J = \int_0^\infty J_{\lambda}(\lambda) d\lambda = \int_0^\infty \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,e+r}(\lambda,\theta,\phi) \cos\theta \cdot \sin\theta d\theta d\phi d\lambda$$

- Usualmente o termo HEMISFÉRICO é omitido e fala-se em RADIOSIDADE ESPECTRAL $J_{\lambda}(\lambda)$ e RADIOSIDADE TOTAL J.
- Embora a distribuição direcional da radiosidade de uma superfície varie de acordo com a superfície, existe um caso especial que fornece uma aproximação razoável para muitas superfícies.

- Esse caso é o emissor difuso e refletor difuso, onde a intensidade da radiação emitida é independente da direção, ou seja:

$$I_{\lambda,e+r}(\lambda,\theta,\phi) = I_{\lambda,e+r}(\lambda)$$

- Da definição da RADIOSIDADE ESPECTRAL $J_{\lambda}(\lambda)$:

$$J_{\lambda}(\lambda) = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,e+r}(\lambda) \cos\theta \cdot \sin\theta d\theta d\phi = I_{\lambda,e+r}(\lambda) \int_{0}^{2\pi} \int_{0}^{\pi/2} \cos\theta \cdot \underline{\sin\theta} d\theta d\phi$$

$$=I_{\lambda,e+r}(\lambda)\int_{0}^{2\pi}\int_{0}^{\pi/2}udud\phi=I_{\lambda,e+r}(\lambda)\int_{0}^{2\pi}\left(\frac{u^{2}}{2}\right)_{0}^{\pi/2}d\phi=I_{\lambda,e+r}(\lambda)\int_{0}^{2\pi}\left(\frac{\sin^{2}\theta}{2}\right)_{0}^{\pi/2}d\phi$$

$$=I_{\lambda,e+r}(\lambda)\int_{0}^{2\pi} \left[\frac{\sin^{2}(\pi/2) - \sin^{2}(0)}{2} \right]_{0}^{\pi/2} d\phi = I_{\lambda,e+r}(\lambda)\int_{0}^{2\pi} \left(\frac{1}{2} \right) d\phi = \left(\frac{1}{2} \right) I_{\lambda,e+r}(\lambda)\int_{0}^{2\pi} d\phi d\phi d\phi$$

$$=2\pi \left(\frac{1}{2}\right)I_{\lambda,e+r}(\lambda) \Longrightarrow J_{\lambda}(\lambda)=\pi I_{\lambda,e+r}(\lambda)$$

- Da definição da RADIOSIDADE TOTAL *J* :

$$\begin{split} J &= \int_0^\infty \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,e+r}(\lambda) \cos\theta \cdot \underline{\sin\theta} d\theta d\phi d\lambda \\ &= \int_0^\infty \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,e+r}(\lambda) u du d\phi d\lambda = \int_0^\infty \int_0^{2\pi} I_{\lambda,e+r}(\lambda) \left(\frac{u^2}{2}\right)_0^{\pi/2} d\phi d\lambda = \int_0^\infty \int_0^{2\pi} I_{\lambda,e+r}(\lambda) \left(\frac{\sin^2\theta}{2}\right)_0^{\pi/2} d\phi d\lambda \\ &= \int_0^\infty \int_0^{2\pi} I_{\lambda,e+r}(\lambda) \left[\frac{\sin^2(\pi/2) - \sin^2(0)}{2}\right]_0^{\pi/2} d\phi d\lambda = \int_0^\infty \int_0^{2\pi} I_{\lambda,e+r}(\lambda) \left(\frac{1}{2}\right) d\phi d\lambda \\ &= \left(\frac{1}{2}\right) \int_0^\infty I_{\lambda,e+r}(\lambda) \int_0^{2\pi} d\phi d\lambda = 2\pi \left(\frac{1}{2}\right) \int_0^\infty I_{\lambda,e+r}(\lambda) d\lambda \Rightarrow J = \pi I_{e+r} \end{split}$$

- I_{e+r} é a intensidade total da radiação emitida e o ângulo π tem unidade esterorradianos.

12.3.6-RELAÇÃO COM O FLUXO RADIANTE LÍQUIDO PARA SUPERFÍCIE OPACA

- O FLUXO RADIANTE LÍQUIDO, $q_{rad}^{"}$ (W/m²), é a diferença entre as radiações saindo e as radiações entrando na superfície: $q_{rad}^{"} = J G$
- Utilizando as definições anteriores de *J* e *G* obtém-se:

$$q_{rad}^{"} = \int_0^\infty \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,e+r}(\lambda,\theta,\phi) \cos\theta \cdot \sin\theta d\theta d\phi d\lambda$$

$$-\int_0^\infty \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,i}(\lambda,\theta,\phi) \cos\theta \cdot \sin\theta d\theta d\phi d\lambda$$